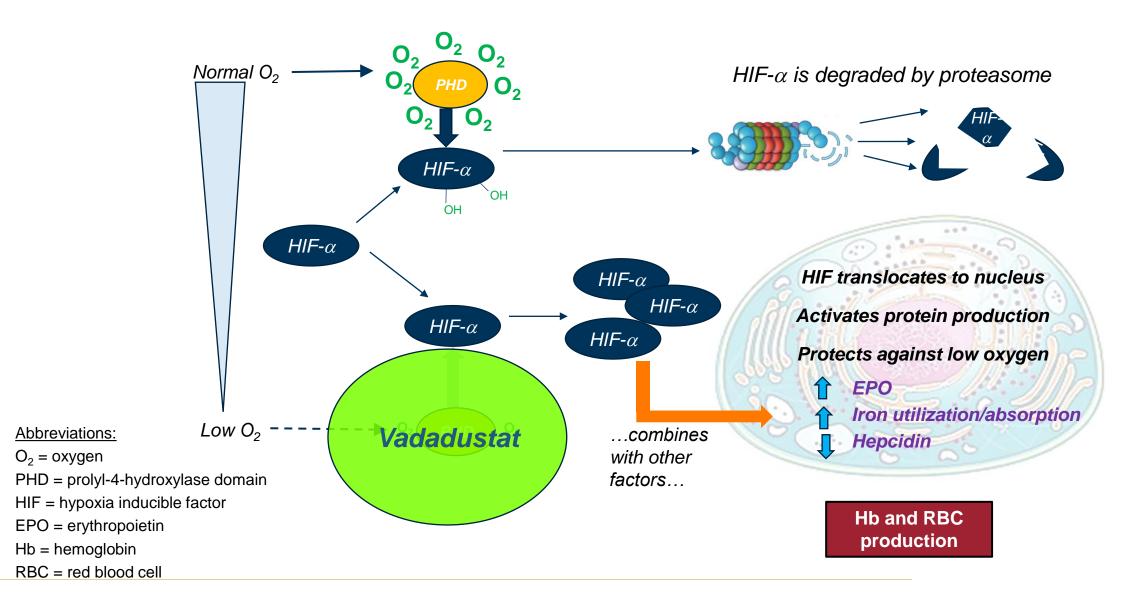
Preclinical Characterization of Vadadustat (AKB-6548), an Oral Small Molecule Hypoxia Inducible Factor Prolyl-4-Hydroxylase Inhibitor, for the Potential Treatment of Renal Anemia

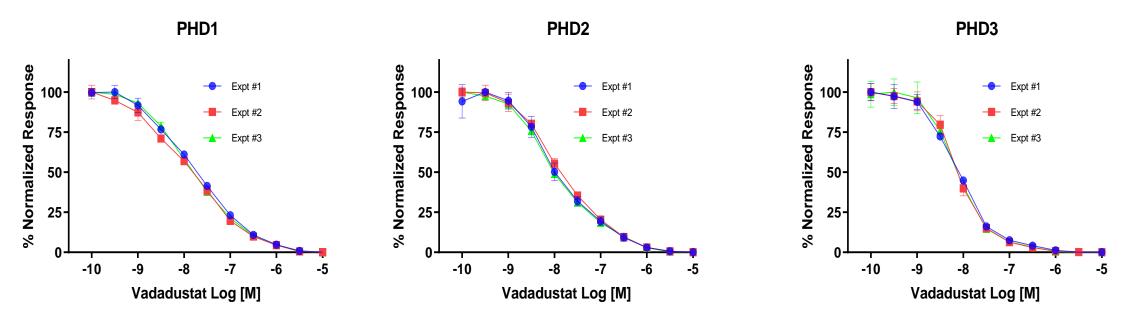
A. Zuk, Z. Si, S. Loi, S. Bommegowda, S. Danthi, G. Molnar, M. Rabinowitz Research and Development Akebia Therapeutics Cambridge, MA

Disclosures

 The authors are employees of Akebia Therapeutics, which funded the studies


Disclaimers

 Vadadustat is an investigational drug. Vadadustat is not approved by the United States Food and Drug Administration or any regulatory authority.

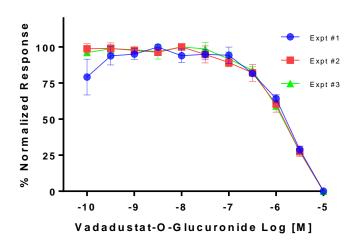

Objective

 To summarize the preclinical pharmacological characterization of vadadustat

HIF and the prolyl-4-hydroxylase domain enzymes

Vadadustat inhibits recombinant human PHD1, PHD2 and PHD3 at equivalent nanomolar concentrations*

^{*}Measured by Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) Assay. Data represent Mean <u>+</u> SD.


	Mean (95% Confidence Interval)			
	IC ₅₀ value (nM)	pIC ₅₀ value		
PHD1	15.36 (11.96, 19.73)	7.81 (7.71, 7.92)		
PHD2	11.83 (8.20, 17.07)	7.93 (7.77, 8.09)		
PHD3	7.63 (7.21, 8.07)	8.12 (8.09, 8.14)		

Abbreviations:

PHD = prolyl-4-hydroxylase domain IC_{50} = half maximal inhibitory concentration pIC_{50} = negative log of the IC_{50} value in molar

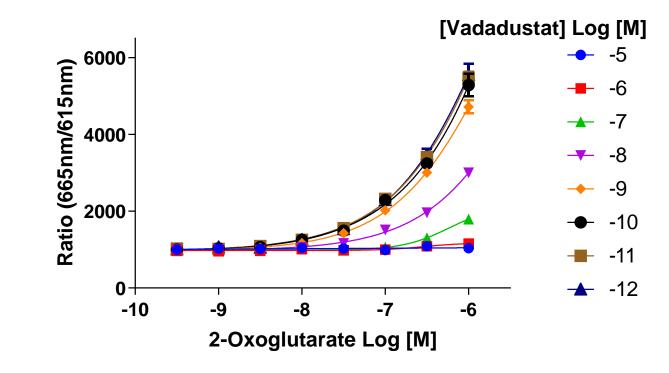
Vadadustat-O-glucuronide inhibits recombinant human PHD2 at micromolar concentration*

Vadadustat-O-glucuronide

*Measured by TR-FRET Assay. Data represent Mean + SD.

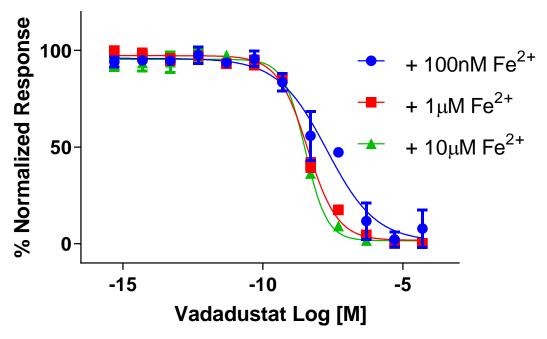
	IC ₅₀ value (μM)	pIC ₅₀ value	
Mean (95%	2.31 (1.74, 3.08)	E 64 /E E1 E 77\	
Confidence Internal)		5.64 (5.51, 5.77)	

Inhibition is approximately 200-fold less potent than the parent compound at the IC₅₀


Abbreviations:

PHD2 = prolyl-4-hydroxylase domain 2

 IC_{50} = half maximal inhibitory concentration

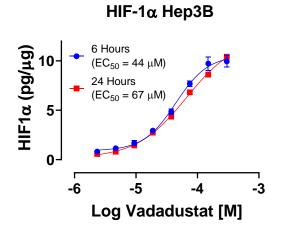

 pIC_{50} = negative log of the IC_{50} value in molar

Vadadustat is a competitive inhibitor of 2-oxoglutarate for recombinant human PHD2*

*Measured by TR-FRET Assay. Data represent Mean + SD.

Vadadustat inhibition of recombinant human PHD2 is not sensitive to iron concentration in vitro*

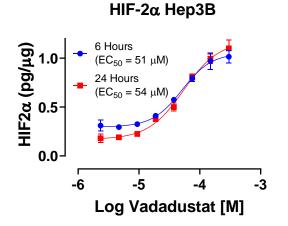
^{*}Measured by TR-FRET Assay. Data represent Mean <u>+</u> SD.

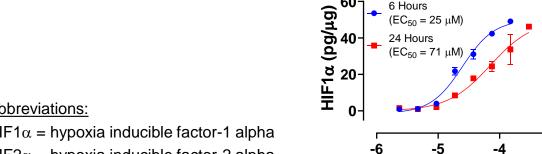

	Vadadustat +	Vadadustat +	Vadadustat +
	100 nM Fe ²⁺	1 µM Fe ²⁺	10 μM Fe ²⁺
IC ₅₀ (nM)	19.25 ± 5.74	3.91 ± 0.38	3.26 ± 0.24

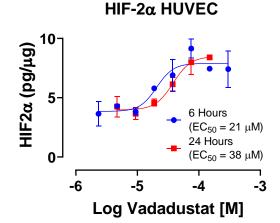
Abbreviations:

PHD2 = prolyl-4-hydroxylase domain 2

 IC_{50} = half maximal inhibitory concentration

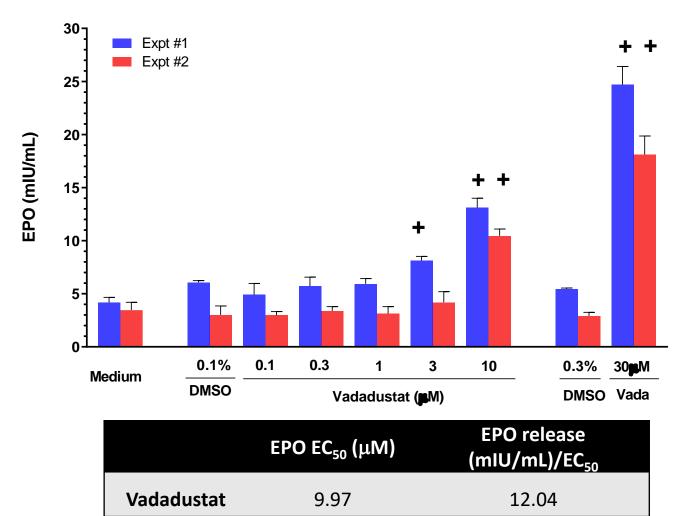

Vadadustat was shown to stabilize both HIF-1 α and HIF-2 α in Hep3B and HUVEC cell lines in a dose and time dependent manner*




HIF-1α HUVEC

Log Vadadustat [M]

6 Hours

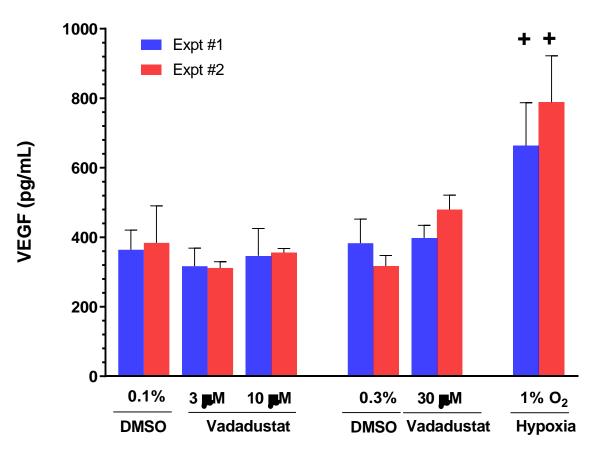

*Measured by Mesoscale Discovery (MSD) Electrochemiluminescence Assay. HIF1lpha and HIF2 α were normalized to total cellular protein (pg/µg). Data represent Mean + SD.

-3

Abbreviations:

HIF1 α = hypoxia inducible factor-1 alpha $HIF2\alpha$ = hypoxia inducible factor-2 alpha Hep3B = human hepatocarcinoma cell line HUVEC = human umbilical vein endothelial cell

Erythropoietin (EPO) secretion is increased in vitro after exposure of Hep3B cells to vadadustat*

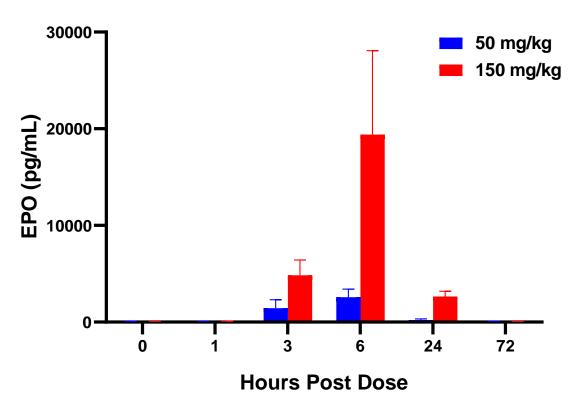


Abbreviations:

DMSO = dimethylsulfoxide vehicle EC₅₀ = half maximal effective concentration

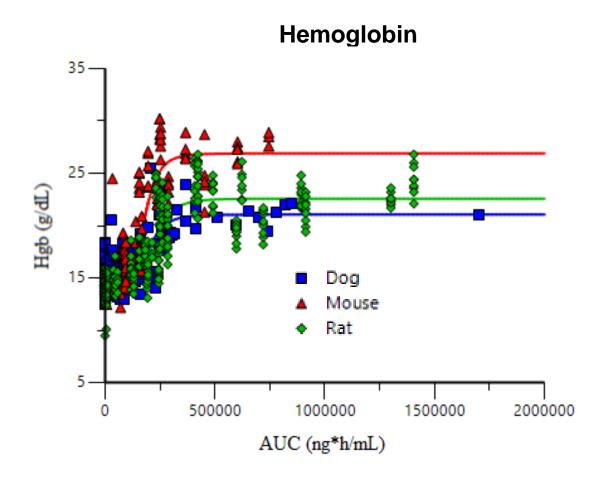
*Measured by an Enzyme Linked ImmunoSorbent Assay (ELISA) after 24 hrs incubation. Data represent Mean \pm SD. + P < 0.05 vs respective DMSO Control, Tukey's Multiple Comparisons Test

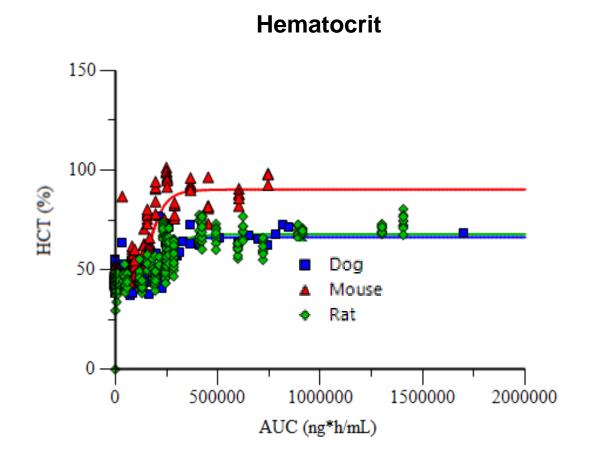
Production of vascular endothelial growth factor (VEGF) was not observed to increase in vitro after exposure of Hep3B cells to vadadustat*



*Measured by Enzyme Linked ImmunoSorbent Assay (ELISA) after 24 hrs incubation. Data represent Mean \pm SD. \pm P < 0.05 vs 0.1% DMSO, Tukey's Multiple Comparisons Test.

Abbreviations:


DMSO = dimethylsulfoxide vehicle


Single-dose administration of vadadustat in rats was shown to increase the circulating levels of EPO in a time and dose dependent manner*

^{*}Measured by Enzyme Linked ImmunoSorbent Assay (ELISA). Data represent Mean + SD.

Multi-dose exposure to vadadustat in mouse, rat and dog demonstrated increases in hemoglobin and hematocrit

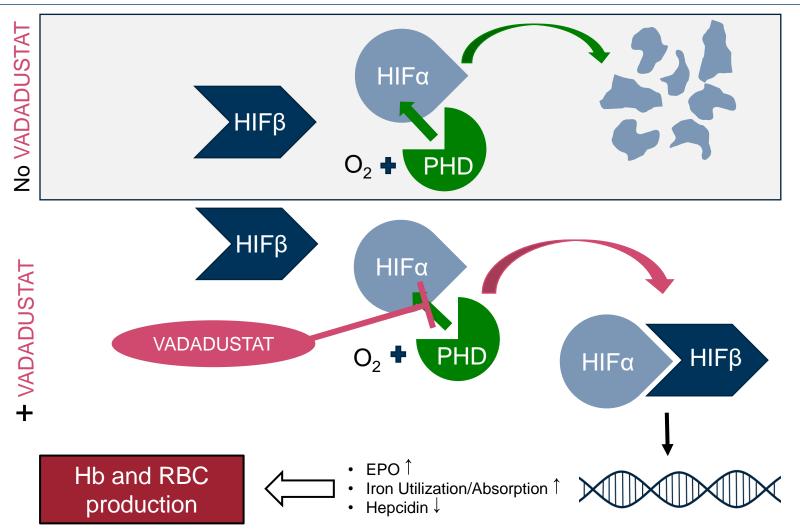
Duration of treatment of normal animals:

- Mouse = up to 6 months
- Rat = up to 2 years
- Dog = up to 9 months

In mouse, rat and dog, vadadustat had a relatively short halflife and did not accumulate after repeat dosing

Dose Level (mg/kg)	Day	Gender Combined T _{1/2} (h)	Gender Combined AUC _{last} (μg*h/mL)	Accumulation Ratio
100	1	2.40	234	NA
100	56	1.90	197	0.84
120 .	1	2.09	993	NA
120	28	2.05	902	0.90
120	1	2.86	740	NA
120	28	3.59	776	1.05
		(mg/kg) 1 100 56 120 28 120	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

NA = Not Applicable


Conclusions

- In the preclinical setting, vadadustat
 - inhibited recombinant human PHD1, PHD2 and PHD3 isoenzymes at equivalent nanomolar concentrations
 - -stabilized both HIF-1α and HIF-2α in vitro
 - -stimulated EPO production in vitro and in vivo
 - increased hemoglobin and hematocrit in multiple species
 - did not stimulate VEGF production in vitro
- The pharmacology of vadadustat support development for anemia of CKD and ESRD

END

Possible backup slides

Background and Mechanism of Action

- Vadadustat is an orally bioavailable hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI) in development for the potential treatment of anemia due to chronic kidney disease
- The HIF-PH enzymes are also referred to as EGLN proteins or prolyl 4-hydroxylase domains (PHDs)
- Pharmacological inhibition of PHD enzymes lead to the stabilization of hypoxia-inducible factor (HIF), a transcription factor that activates target genes to improve the O₂ carrying capacity of the blood